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Abstract

The nonlinear contact problem of laminated composite plate is linearized by inverse method, i.e. the contact zone and

the loading distribution with adjustable parameter on contact zone are assumed to be given to solve the curvature of

indenter––a rigid sphere. By means of the principle of superposition, the loading state is decomposed into symmetric

state and antisymmetric state. The antisymmetric state is decomposed further to obtain simpler loading state for analysis.

The Fourier series and Legendre series are applied to describing the displacement field of contact loading states, and the

principle of minimum potential energy is used to determine the unknown coefficients of the above series. Then the

displacement and stress fields of the laminated composite plate are known. The adjustable parameter of loading dis-

tribution is used to satisfy the compatibility conditions of displacements along the contact surface. By the way the

indenter curvature is determined. Then, a series of curves can be figured out after the operation with definite steps. Be

based on these curves, the contact zones can be determined from known indenter curvature and the loading. In addition,

the glue layers are considered completely the same as other composite plies in this analysis. From the computational

results, it can be shown that the displacements and stresses converge very well, and the distributions of shearing and

normal stresses obtained from constitutive equation and from equilibrium equation agree with each other very well.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Contact analysis is a difficult task in solid mechanics for its nonlinearity, especially in analysis of

composite structures. The classical contact theory––Hertz formula (Hertz, 1881) is based upon assumption

of semi-infinite plane or space. Whereas the thickness dimension of each layer in general composite

structures are finite comparing with the dimensions of contact zone. Finite element method (Mahajan,
1998; V�aaradi et al., 1999) and boundary element method (Simunovic and Srdan, 1992), which always lead
to a large number of degrees of freedom especially in three-dimensional analysis, are used to solve contact

problem. Other various methods (see e.g. Ahmadi et al., 1983; Keer and Miller, 1983; Sankar, 1989; Wu

and Yen, 1994) are applied by using approximate or exact Green�s function. These methods are complex for
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solving the nonlinear problem straightly, moreover, the thickness and rigidity of glue layers are assumed to

be zero and infinite respectively. However, in analysis of damage mechanics of composite structures, it is

very important to know the damage coupled distribution of stresses of glue layers, because many composite

structures are failed from the delamination cracks created by shearing stress or normal stress on the in-
terface between glue layer and composite ply. Interface constitutive laws have been mainly used in the study

of contact problems, fracture mechanics for concrete, adhesive films, homogeneized behavior of composite

and of composite delamination. The use of interface models in the analysis of composite delamination has

been proposed by Allix (1989), and developed in Allix et al. (1991), Ladev�eeze (1992), Allix and Ladev�eeze
(1992). In these works the schematization of the laminated proposed by Ladev�eeze is used. In this paper the
thickness and rigidity of glue layers are considered completely the same as other composite plies. To

simplify the analysis, the generalized parabolic pressure distribution with an adjustable parameter is applied

to simulating the actual pressure distribution. To avoid the complexity of nonlinear problem, inverse
method is applied, namely the loading distribution with adjustable parameter and contact zone are assumed

to be known and the curvature of indenter is to be solved. In this paper, to consider the analysis of del-

amination damage and fatigue life prediction further, energy method is applied instead of exact solution

(Pagano, 1970). The results show the displacements and stresses converge very well, further more, the

distribution of shearing stresses and normal stress obtained from constitutive equation agree with that

obtained from equilibrium equation very well.

2. The decomposition of loading state

Figs. 1 and 2 show a symmetrically laminated composite plate of simple supports pressed by a rigid

sphere at the mid-point of upper surface. The curvature of rigid sphere is j.

Fig. 1. The original loading state of laminated composite plate.

Fig. 2. A laminated composite plate with an indention of elliptic projection.
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The loading state is decomposed into symmetric state and antisymmetric state. According to the prin-
ciple of Sanit–Venant, the symmetric state can be simplified as the symmetric state hai further, which is
shown in Fig. 3. Similarly, the antisymmetric state can be decomposed into the antisymmetric loading state

hbi and the additional loading state hci further, which are shown in Figs. 4 and 5 respectively.

3. The analysis of the symmetric loading state

3.1. The further simplification for the mechanics model of symmetric loading state

The dimensions of contact zone and the plate thickness are very small in comparison with the width and

length of laminated plate. Then the stress field of plate under the above symmetric loading has obvious local
effects. According to Saint–Venant�s principle, the analysis is only needed in the internal part of plate and

Fig. 3. The symmetric loading state hai.

Fig. 4. The antisymmetric loading state hbi.

Fig. 5. The additional loading state hci.
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the external part can be considered as stress free. The loading state of internal square part with span l

determined from Saint–Venant�s principle is shown in Fig. 3.

3.2. Displacements field

The laminated plate is subjected to transverse load that is symmetrical about x-axis, y-axis and z-axis.

So, w is the even function of x and y, while the odd function of z, and u is the odd function of x, while the

even function of y and z, and v is the odd function of y, while the even function of x and z. Then the

displacement field can be described as follows

wðkÞðx; y; zÞ ¼
P

m;n;p C
ðkÞ
mnpfmðxÞfnðyÞgpðzÞ

uðkÞðx; y; zÞ ¼
P

m;n;p A
ðkÞ
mnpsmðxÞfnðyÞtpðzÞ

vðkÞðx; y; zÞ ¼
P

m;n;p B
ðkÞ
mnpfmðxÞsnðyÞtpðzÞ

9>=
>; ð1Þ

where m; n; p ¼ 1; 2; 3; . . . ; is the code of each function term in series; k is the sequence number of every
composite ply or glue layer and it has the same meaning in following equations; AðkÞ

mnp, B
ðkÞ
mnp and C

ðkÞ
mnp are the

unknown generalized displacements; and

fmðxÞ ¼ ð�1Þmþ1 cos 2m� 1
l

px
� �

smðxÞ ¼ ð�1Þm sin 2m� 1
l

px
� �

fnðyÞ ¼ ð�1Þnþ1 cos 2n� 1
l

py
� �

snðyÞ ¼ ð�1Þn sin 2n� 1
l

py
� �

gpðzÞ ¼ P2p�1
z
h

� 	
¼
Xp�1
i¼0

ð�1Þið4p � 2i� 2Þ!
22p�1i!ð2p � i� 1Þ!ð2p � 2i� 1Þ!

z
h

� 	2p�2i�1

tpðzÞ ¼ P2p�2
z
h

� 	
¼
Xp�1
i¼0

ð�1Þið4p � 2i� 4Þ!
22p�2i!ð2p � i� 2Þ!ð2p � 2i� 2Þ!

z
h

� 	2p�2i�2

where, P z=hð Þ is the Legendre function.

3.3. The distribution of contact pressure

The distribution of contact pressure on the upper surface can be expressed by following function:

pðx; yÞ ¼ p0 1� x
a

� �mh i
1� ðy=bÞmffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ðx=aÞ2
p� �m

" #
x 2 X; m 2 ½2; 4; 6; . . .�

0 x 62 X

8><
>: ð2Þ

where p0 is the maximum pressure intensity, a and b are the semi-major axis and semi-minor axis of contact
area respectively, m is defined as loading exponent determined by the compatibility conditions of dis-
placements within the contact surface in Section 6. X denotes the contact zone. From Eq. (2), the rela-
tionship between total load P and maximum pressure intensity p0 can be expressed by following function:
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P ¼ 8abp0
Z 1

0

Z ffiffiffiffiffiffiffiffiffiffi
1�ð�xxÞ2

p

0

1
�

� ð�xxÞm
	
1

2
6664 � ð�yyÞmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�xxÞ2
q� �m

3
7775d�xxd�yy ð3Þ

where, �xx ¼ x=a, �yy ¼ y=b.
The contact load can be expanded by Fourier series:

pðx; yÞ ¼
X
m;n

pmnðx; yÞð�1Þmþ1 cos
2m� 1

l
px

� �
ð�1Þnþ1 cos 2n� 1

l
py

� �
ð4Þ

where

pmnðx; yÞ ¼
4

l2

Z a

�a

Z b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx=aÞ2

p

�b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx=aÞ2

p pðx; yÞð�1Þmþ1 cos 2m� 1
l

px
� �

ð�1Þnþ1 cos 2n� 1
l

py
� �

dxdy

3.4. Energy-method

Now, the generalized displacements AðkÞ
mnp, B

ðkÞ
mnp and C

ðkÞ
mnp in Eq. (1) will be determined by the principle of

minimum potential energy.

The strain energy of laminated plate can be obtained from the following equation

U ¼
X
k

Uk ¼
X
k

1

2

Z zk

zk�1

Z l=2

�l=2

Z l=2

�l=2
rðkÞ
ij eðkÞij dxdy dz ð5Þ

The constitutive relations of kth arbitrary composite ply or glue layer can be expressed as:

rðkÞ
x

rðkÞ
y

rðkÞ
z

sðkÞyz
sðkÞxz
sðkÞxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

QðkÞ
11 QðkÞ

12 QðkÞ
13 QðkÞ

14 QðkÞ
15 QðkÞ

16

QðkÞ
12 QðkÞ

22 QðkÞ
23 QðkÞ

24 QðkÞ
25 QðkÞ

26

QðkÞ
13 QðkÞ

23 QðkÞ
33 QðkÞ

34 QðkÞ
35 QðkÞ

36

QðkÞ
14 QðkÞ

24 QðkÞ
34 QðkÞ

44 QðkÞ
45 QðkÞ

46

QðkÞ
15 QðkÞ

25 QðkÞ
35 QðkÞ

45 QðkÞ
55 QðkÞ

56

QðkÞ
16 QðkÞ

26 QðkÞ
36 QðkÞ

46 QðkÞ
56 QðkÞ

66

2
666666664

3
777777775

eðkÞx
eðkÞy
eðkÞz
cðkÞyz
cðkÞxz
cðkÞxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð6Þ

The geometry equation of kth ply or layer is

eðkÞij ¼ 1
2

ouðkÞi
oxj

 
þ
ouðkÞj
oxi

!
ð7Þ

From Eqs. (1) and (5)–(7), the strain energy of kth ply or layer in composite laminate can be expressed as

U ðkÞ ¼ 1
2

X
m;n;p;i;j;q

SðAAÞkmnpijqA
ðkÞ
mnpA

ðkÞ
ijq

(
þ

X
m;n;p;i;j;q

SðABÞkmnpijqA
ðkÞ
mnpB

ðkÞ
ijq þ

X
m;n;p;i;j;q

SðACÞkmnpijqA
ðkÞ
mnpC

ðkÞ
ijq

þ
X

m;n;p;i;j;q

SðBAÞkmnpijqB
ðkÞ
mnpA

ðkÞ
ijq þ

X
m;n;p;i;j;q

SðBBÞkmnpijqB
ðkÞ
mnpB

ðkÞ
ijq þ

X
m;n;p;i;j;q

SðBCÞkmnpijqB
ðkÞ
mnpC

ðkÞ
ijq

þ
X

m;n;p;i;j;q

SðCAÞkmnpijqC
ðkÞ
mnA

ðkÞ
pq þ

X
m;n;p;i;j;q

SðCBÞkmnpijqC
ðkÞ
mnpB

ðkÞ
ijq þ

X
m;n;p;i;j;q

SðCCÞkmnpijqC
ðkÞ
mnpC

ðkÞ
ijq

)
ð8Þ

where SðAAÞkmnpijq; S
ðABÞ
kmnpijq; S

ðACÞ
kmnpijq; . . . ; S

ðCCÞ
kmnpijq are known coefficients determined from Eqs. (1), (5)–(7).
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The potential energy of external force can be expressed as

V ¼ �2
Z a

�a

Z b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx=aÞ2

p

�b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx=aÞ2

p pðx; yÞ 
 wðkmaxÞðx; y; hÞdxdy � 2
Z l=2

�l=2

Z h

�h
rx

l
2
; y; z

� �

 u l
2
; y; z

� �
dzdy

� 2
Z l=2

�l=2

Z h

�h
sxy

l
2
; y; z

� �

 v l
2
; y; z

� �
dzdy � 2

Z l=2

�l=2

Z h

�h
sxz

l
2
; y; z

� �

 w l

2
; y; z

� �
dzdy

� 2
Z l=2

�l=2

Z h

�h
syx x;

l
2
; z

� �

 u x;

l
2
; z

� �
dzdx� 2

Z l=2

�l=2

Z h

�h
ry x;

l
2
; z

� �

 v x;

l
2
; z

� �
dzdx

� 2
Z l=2

�l=2

Z h

�h
syz x;

l
2
; z

� �

 w x;

l
2
; z

� �
dzdx ð9Þ

where kmax is the sequence number of the outmost composite ply.
On the interface between the kth layer and the k þ 1th layer, the conditions of continuity must be

satisfied by the displacement and surface force. So an additional term should be included in the functional

of total potential energy as

J ðk;kþ1Þ ¼
Z
S�

uðkþ1Þ
�h

� uðkÞ
�
sðkÞxz þ vðkþ1Þ

�
� vðkÞ

�
sðkÞyz þ wðkþ1Þ�

� wðkÞ�rðkÞ
z

i
dS� ð10Þ

Be based on the principle of multi-zone generalized potential energy, we have

dP ¼ d
Xkmax
k¼1

U ðkÞ

 (
þ
Xkmax�1
k¼1

J ðk;kþ1Þ
!

þ V

)
¼ 0 ð11Þ

According to Eq. (11), a system of equations about generalized displacements AðkÞ
mnp, B

ðkÞ
mnp and C

ðkÞ
mnp can be

obtained as followsP
k;i;j;q T

ðAAÞ
kmnpijq 
 A

ðkÞ
ijq þ

P
k;i;j;q T

ðABÞ
kmnpijq 
 B

ðkÞ
ijq þ

P
k;i;j;q T

ðACÞ
kmnpijq 
 C

ðkÞ
ijq ¼ 0P

k;i;j;q T
ðBAÞ
kmnpijq 
 A

ðkÞ
ijq þ

P
k;i;j;q T

ðBBÞ
kmnpijq 
 B

ðkÞ
ijq þ

P
k;i;j;q T

ðBCÞ
kmnpijq 
 C

ðkÞ
ijq ¼ 0P

k;i;j;q T
ðCAÞ
kmnpijq 
 A

ðkÞ
ijq þ

P
k;i;j;q T

ðCBÞ
kmnpijq 
 B

ðkÞ
ijq þ

P
k;i;j;q T

ðCCÞ
kmnpijq 
 C

ðkÞ
ijq ¼ Rkmnp

9>=
>; ð12Þ

(k ¼ 1; 2; . . . ; kmax; m; i ¼ 1; 2; 3; . . . ;M ; n; j ¼ 1; 2; 3; . . . ;N ; p; q ¼ 1; 2; 3; . . . ;NP ).
Then AðkÞ

mnp, B
ðkÞ
mnp and C

ðkÞ
mnp can be determined by solving above system of equations. The displacement

components, strain and stress components are determined also. M, N are given by Eq. (4) and NP will be

determined by convergence test of stress components.

4. The analysis of the antisymmetric loading state

4.1. The further simplification for the mechanical model of antisymmetric loading state

Then we discuss the stress field of plate under the antisymmetric loading. According to the Saint–

Venant�s principle, the analysis is only needed in the internal part of plate and the external part can be
analyzed in classical laminated composite plate theory. Further more, in the contact effect zone, the anti-
symmetric loading can be decomposed into the loading state of simply supported plate shown in Fig. 4 and

the additional loading state with boundary conditions of static force shown in Fig. 5.
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4.2. The solutions for the antisymmetric loading state hbi

In displacement field expressions of this loading state, all the functions except for tpðzÞ and gpðzÞ, which
are expressed in Eq. (13), are the same with Eq. (1)

gpðzÞ ¼ P2p�2 z
h

� �
¼
Pp�1

i¼0
ð�1Þið4p�2i�4Þ!

22p�2i!ð2p�i�2Þ!ð2p�2i�2Þ!
z
h

� �2p�2i�2
tpðzÞ ¼ P2p�1 z

h

� �
¼
Pp�1

i¼0
ð�1Þið4p�2i�2Þ!

22p�1i!ð2p�i�1Þ!ð2p�2i�1Þ!
z
h

� �2p�2i�1
9=
; ð13Þ

To solve the unknown generalized displacements in the displacement field expression of this loading

state, it is just needed to take the same steps that have been done in Section 3.

4.3. The solutions for the additional loading state hci

In the additional loading state shown in Fig. 5, the plate is subjected to the symmetrical static force on
every boundary. The classical laminated plate theory is used and the displacement field can be described as

follows

w ¼
P

m;n Cmn cos
2m�1
l px

� �
cos 2n�1

l py
� �

þ cos 2m�1
l px

� �
þ cos 2n�1

l py
� �! "

u ¼ � ow
ox z ¼

P
m;n Cmn

2m�1
l p

� �
sin 2m�1

l px
� �

cos 2n�1
l py

� �
þ 1

! "

 z

v ¼ � ow
oy z ¼

P
m;n Cmn

2n�1
l p

� �
cos 2m�1

l px
� �

þ 1
! "

sin 2n�1
l py

� �

 z

9>>=
>>; ð14Þ

where, m; n ¼ 1; 2; 3; . . . ; is the sequence number of each function term in series. Cmn is the unknown
generalized displacement.

The force on the boundaries is the difference between two states. One state is the stress solutions on the

boundary sections of Saint–Venant�s zone from solving the original plate of simple supports subjected to
the concentrated force on it�s center point, and the other state is the stress solutions on the boundaries of
plate (the span of which is the same with that of Saint–Venant�s zone) from solving the loading state which
is same as the one shown in Fig. 4 expect that it is subjected to the concentrated load instead of distributive

one on it�s center point. These two states of stress solutions can be obtained straightly from Levy�s solu-
tions. Then the principle of minimum potential energy is used to determine the generalized displacement
Cmn in Eq. (14).

5. Equations of displacement compatibility in the contact zone

Due to the high rigidity of the metallic sphere in comparison with the composite laminated plate, the

contact sphere is assumed to be a rigid body. Furthermore, for the simplicity of analysis, the equations of

displacement compatibility are established along the major and minor axis of the elliptical contact zone, on

the basis of the least-square method. Then the following quantity and equation will be introduced,

D2 ¼ D21 þ D22

¼
Z a

0

ðwð0; 0; hÞ
#

� wðx; 0; hÞÞ � 1
2

jx2
$2
dxþ

Z b

0

ðwð0; 0; hÞ
#

� wð0; y; hÞÞ � 1
2

jy2
$2
dy ð15Þ

oD2

oj
¼ 1
10

ða5 þ b5Þj þ
Z a

0

wð0; 0; hÞx2 dxþ
Z b

0

wð0; 0; hÞy2 dy �
Z a

0

wðx; 0; hÞx2 dx�
Z b

0

wð0; y; hÞy2 dy ¼ 0

ð16Þ
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where wð0; 0; hÞ is the deflection of plate at the mid-point of the contact zone, wðx; 0; hÞ and wð0; y; hÞ are the
deflections of plate at the arbitrary points along x-axis and y-axis respectively in contact zone, j is the
curvature of the rigid sphere. Then m in Eq. (2), the corresponding value of j and the ratio a/b between

semi-major axis a and semi-minor axis b are determined by the minimum condition of Eq. (15). This
minimum condition can be considered as the equation of displacement compatibility in the contact zone in

the sense of least-square method.

6. The solution of inverse method for contact problem

The solution of the contact problem is performed by inverse method, on the basis of the analysis given

above, through the following procedure:

(a) give a total load P;

(b) give a sequence of value m;
(c) for each value of m give a series of value b=h;
(d) for each value of b/h give a series of value a=b;
(e) establish the relationship between curvature j of sphere and a=b by means of the minimum condition of

D for each m and a series of value b=h;
(f) on the basis of above relationship, draw a family of curves of D � a=b, for each m and a series of value

b=h;
(g) determine the sequence of a=b and the corresponding curvature j obtained by the minimum condition
of D from the above family of curves for the given values of b=h. That is to say, a set of known P and
b=h determine an unique value a=b and the corresponding curvature j;

(h) draw the curve P � j under different b=h;
(i) based on the fact that P is in direct proportion to the j under a given contact zone, simplify the above
curves into the form of curve about relationship between b=h and P=j.

So the contact zone can be determined from the above curves in practical application. Further, the

displacement and stress fields are determined also. Figs. 12–15 are the typical examples of above curves

used to determine the contact zone.

7. Example

To verify the availability of above method, a typical example is presented.

The plate is an orthotropic laminated plate. The constants of each composite ply are given as

E1 ¼ E0; E2 ¼ 0:3E0; E3 ¼ 0:6E0; G12 ¼ 0:16E0; G13 ¼ 0:3E0; G23 ¼ 0:2E0;
l12 ¼ 0:3; l13 ¼ 0:3; l23 ¼ 0:3:

The length, width and height of original plate are L1 ¼ 50h, L2 ¼ 40h and H ¼ 2h respectively. The
composite laminates are symmetrical about x-axis and y-axis. The sequence of laminate angle is 0�/90�/0�.
The thickness of each composite laminate is 0:4875h=0:975h=0:4875h. The thickness of each glue layer is
0.025h.

The glue layer is isotropic and the material constants are given as

Eg ¼ 0:021E0; lg ¼ 0:30:
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Table 1

The convergence tests of deflection and stresses of the plate and curvature of the rigid sphere

NP wð0; 0; hÞ=h hj rxð0; 0; hÞ=E0 ryð0; 0; hÞ=E0 rzð0; 0hÞ=E0 sxyðl=4; l=4; z1Þ=E0
1 )5.64419E)03 2.79185E)02 )8.72581E)04 )5.47431E)04 0:00000Eþ 00 )2.36667E)06
2 )6.80141E)03 4.78470E)02 )4.87995E)03 )2.97110E)03 )1.37227E)03 3.17970E)05
3 )7.08910E)03 5.16275E)02 )6.24200E)03 )3.65161E)03 )5.78324E)03 2.66613E)05
4 )7.23713E)03 5.38969E)02 )6.52268E)03 )3.58604E)03 )6.64762E)03 2.65833E)05
5 )7.24583E)03 5.37297E)02 )6.10267E)03 )3.30684E)03 )6.05526E)03 2.65859E)05
6 )7.24509E)03 5.35982E)02 )6.11963E)03 )3.39118E)03 )5.35307E)03 2.65868E)05
7 )7.24530E)03 5.35914E)02 )6.08061E)03 )3.37749E)03 )5.58899E)03 2.65871E)05
8 )7.24542E)03 5.35945E)02 )6.10598E)03 )3.40124E)03 )5.52380E)03 2.65871E)05
9 )7.24544E)03 5.35951E)02 )6.09652E)03 )3.39349E)03 )5.58922E)03 2.65871E)05
10 )7.24545E)03 5.35951E)02 )6.10018E)03 )3.39657E)03 )5.56567E)03 2.65870E)05

Note: z1 ¼ 0:4875h.

Fig. 6. The distribution of shearing stresses on the section of (l=40; l=40; z) in symmetric loading state.

Fig. 7. The distribution of shearing stresses on the section of (l=40; l=40; z) in antisymmetric loading state.
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The total external loading is P ¼ 1:0e� 3E0h2. The parameters of contact zone are given as b ¼ 0:3h and
a=b ¼ 0:9. The span of square Saint–Venant�s effective zone l ¼ 16b.
The convergence tests of deflection, stress of plate and the curvature of sphere are shown in Table 1.

The distributions of stresses can be obtained also. They are shown in Figs. 6–11. 1 In these figures, the

distributions of shearing and normal stresses obtained from constitutive equation and from equilibrium

equation nearly coincide with each other.

Fig. 8. The distribution of shearing stresses on the section of (l=4; l=4; z) in symmetric loading state.

Fig. 9. The distribution of shearing stresses on the section of (l=4; l=4; z) in antisymmetric loading state.

1 Note: In Figs. 6 and 8, ‘‘sigma1(xz)’’ and ‘‘sigma2(xz)’’ denote the sxz obtained from the constitutive equation and from the
equilibrium equation respectively in the symmetric loading state. In Figs. 7 and 9, ‘‘a-sigma1(xz)’’ and ‘‘a-sigma2(xz)’’ denote the sxz
obtained from the constitutive equation and from the equilibrium equation respectively in the antisymmetric loading state. The

meanings of other denotations can be deduced from above rule.
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Fig. 10. The distribution of normal stress on the section of (0; 0; z) in symmetric and antisymmetric loading states.

Fig. 11. The distribution of normal stress on the section of (l=4; l=4; z) in symmetric and antisymmetric loading states.

Fig. 12. D–a=b curves under different b.
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Fig. 13. j–a=b curves under different b.

Fig. 14. j–P curves under different b.

Fig. 15. b–P=j curve obtained by inverse method.
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For the simplicity of the analysis, the value of m is assumed to have been determined in the example. The
Figs. 12–15 are the curves obtained from the procedure in Section 6. Finally the contact zone can be de-

termined from the Figs 12 and 15 under the given total load P and the curvature j of rigid sphere.

8. Conclusion

From above analysis, it can be concluded that:

(1) The nonlinear contact problem of laminated composite plate is linearized by inverse method, that is to

say, the loading distribution and contact zone are assumed to be given firstly, and the curvature of rigid

sphere is to be solved under compatibility conditions of displacements within the contact surface.

(2) The original problem is simplified by means of the principle of superposition and that of Saint–Venant.

Each decomposed loading state can be solved in simpler way.

(3) The Fourier series and Legendre series are applied to describe the displacement fields of two loading

states needed to be analyzed in contact problem, and the principle of multi-zone generalized potential
energy are used to determine the unknown generalized displacements. The additional loading state can

be analyzed in terms of classical laminated plate theory. Then the displacement and stress fields of the

laminated composite plate are solved.

(4) From the computational results, it can be shown that the distributions of shearing and normal stresses

obtained from constitutive equation and from equilibrium equation agree with each other very well.

(5) Through the inverse method, the contact zone can be determined from the known indenter curvature

and the total load.

(6) This model can be applied to damage analysis of delaminated failure.
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